633. The Crystal Structure of trans-Dimesitylbis(diethylphenylphosphine)cobalt(II).

By P. G. Owston and J. M. Rowe.

The three-dimensional X-ray analysis of $\left[\mathrm{Co}(\text { mesityl })_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2}\right]$ has confirmed its trans-square-planar configuration. The mesityl groups are planar, and perpendicular to the co-ordination plane of the cobalt atom, but are not exactly symmetrical about this plane; the $\mathrm{Co}^{-} \mathrm{C}$ bonds are not coplanar with the mesityl groups, which lie in two parallel planes $0 \cdot 44 \AA$ apart and the cobalt atom is thus $0.22 \AA$ from each mesityl plane. The orthomethyl groups are in contact ($\mathrm{C}-\mathrm{C}=4 \AA$) above and below the cobalt atom. The tetrahedral angles of the phosphine groups are distorted to give larger cobalt-phosphorus-carbon angles (mean value 116.4°), and the $\mathrm{Co}^{-} \mathrm{P}$ bondlength ($2 \cdot 237 \pm 0.004 \AA$) shows considerable double-bond character. The $\mathrm{Co}-\mathrm{C}$ bond-length ($1.96 \pm 0.01 \AA$) indicates that there is no appreciable π-bonding between the cobalt atom and the mesityl group; this may be the result of steric hindrance which prevents the mesityl group from approaching the cobalt atom more closely without further distortion.

It is concluded that the principal requirement for the existence of the complexes $\left[\mathrm{MR}_{2}\left(\mathrm{PR}_{3}{ }^{\prime}\right)_{2}\right]$ is a square-planar configuration, other factors being of minor importance. Where the metal atom has a tendency to form tetrahedral complexes, stability is achieved only as the combined result of the steric hindrance of the trans-phosphine groups acting on the R groups, and of the mutual steric interaction of the R groups to keep $\mathrm{R}-\mathrm{M}-\mathrm{R}$ linear; this is fully effective only when these ligands have sufficiently bulky orthosubstituents.

Chatt and Shaw ${ }^{1,2}$ have described the preparation and properties of a series of alkyl and aryl complexes of transition metals and have discussed the factors which affect their stability. The cobalt complexes $\left[\mathrm{CoR}_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]$ are stable only when R is a di-orthosubstituted aryl group or an aryl group with one very bulky ortho-substituent. They have dipole moments of zero, and magnetic moments of $2 \cdot 3-2 \cdot 7$ B.M., indicating that they have

[^0]a centrosymmetric trans-square-planar configuration; this is unusual in complexes of cobalt(II) and occurs only as a result of steric hindrance. ${ }^{3}$

We have examined the structure of the complex $\left[\mathrm{Co}(\text { mesityl })_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2}\right]$ to confirm that it has a square-planar configuration and to obtain more precise information about the bonding in the molecule and the steric factors which affect its stability.

Experimental and Results

Crystal data for this and for the corresponding nickel compound, which is isomorphous, are given. The compounds were prepared by Dr. B. L. Shaw, using the published methods. ${ }^{2}$
$\left[\mathrm{Co}(\text { mesityl })_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2}\right]$, lemon-yellow platy crystals. $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{CoP}_{2}, M=629 \cdot 7, \mathrm{~m}$. p. $124-127^{\circ}$, monoclinic, $a=10.69 \pm 0.03, b=9.33 \pm 0.03, c=18.25 \pm 0.06 \AA, \beta=107.6 \pm$ $0.1^{\circ} ; U=1734.3 \AA^{3}, D_{\mathrm{m}}=1 \cdot 198 \pm 0.010$ (by flotation), $Z=2, D_{\mathrm{c}}=1 \cdot 206, F(000)=674$. Space group, $P 2_{1} / c$ ($C_{2 h}^{5}$ No. 14). Molecular symmetry i. Co- K_{α} radiation, single-crystal oscillation and Weissenberg photographs.
$\left[\mathrm{Ni}(\text { mesityl })_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2}\right]$, orange-yellow platy crystals. $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{NiP}_{2}, \quad M=629 \cdot 5, \mathrm{~m} . \quad \mathrm{p}$. $154-156^{\circ}$, monoclinic, $a=10.67 \pm 0.03, b=9.40 \pm 0.03, c=18.54 \pm 0.06 \AA, \beta=107.3 \pm$ $0 \cdot 1^{\circ} ; \quad U=1774 \cdot 1 \AA^{3}, D_{\mathrm{m}}=1 \cdot 198 \pm 0.010$ (by flotation), $Z=2, D_{\mathrm{c}}=1 \cdot 178, F(000)=676$. Space group, $P 2_{1} / c\left(C_{2 h}^{5}\right.$ No. 14). Molecular symmetry i. Co- K_{α} radiation, single-crystal oscillation and Weissenberg photographs.

The molecular symmetry requires the metal atom to lie on a centre of symmetry, and the co-ordination round the metal must therefore be trans-square-planar and not tetrahedral.

The intensities of thd $h 0 l, h 1 l, h 2 l, 0 k l, 1 k l, 2 k l$ reflections of the cobalt complex were measured by visual comparison with a standard scale; multiple-film techniques were used. For each

Table 1.
Final atomic parameters, temperature factors $\left(\AA^{2}\right)$, and standard deviations of position.

	x / a	y / b	z / c	B	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
	0	,	0	$2 \cdot 631$	0	0	0
P	$0 \cdot 1570$	$0 \cdot 1638$	0.0116	3.367	0.0033	0.0308	0.0029
C(1)	-0.0964	$0 \cdot 1381$	$0 \cdot 0434$	$3 \cdot 691$	0.0125	0.0144	0.0111
C(2)	-0.0742	$0 \cdot 1326$	$0 \cdot 1261$	$4 \cdot 419$	0.0137	0.0161	0.0123
C(3)	-0.1501	$0 \cdot 2154$	$0 \cdot 1649$	$5 \cdot 216$	$0 \cdot 0158$	0.0173	0.0138
C(4)	-0.2484	0.3075	$0 \cdot 1200$	$5 \cdot 063$	0.0152	0.0175	0.0131
C(5)	-0.2712	$0 \cdot 3201$	$0 \cdot 0419$	$4 \cdot 855$	$0 \cdot 0150$	0.0166	0.0132
C(6)	-0.1981	0.2306	0.0071	$4 \cdot 012$	0.0134	0.0147	0.0116
C(7)	$0 \cdot 0294$	0.0316	$0 \cdot 1783$	6.241	$0 \cdot 0181$	0.0195	0.0165
C(8)	-0.3278	$0 \cdot 4003$	$0 \cdot 1626$	$6 \cdot 622$	$0 \cdot 0181$	0.0207	0.0161
C(9)	-0.2310	$0 \cdot 2424$	-0.0815	5.112	$0 \cdot 0156$	0.0170	0.0137
$\mathrm{C}(10)$	$0 \cdot 2406$	0.2164	$0 \cdot 1113$	$5 \cdot 551$	0.0162	0.0185	0.0141
C(11)	$0 \cdot 1977$	0.3325	$0 \cdot 1455$	6.796	$0 \cdot 0184$	0.0203	0.0169
C(12)	0.2673	0.3687	$0 \cdot 2228$	6.684	0.0186	0.0206	0.0163
C(13)	$0 \cdot 3743$	$0 \cdot 2921$	$0 \cdot 2607$	$7 \cdot 684$	0.0204	0.0236	0.0183
C(14)	$0 \cdot 4240$	$0 \cdot 1780$	$0 \cdot 2314$	$6 \cdot 076$	0.0173	0.0184	0.0156
C(15)	$0 \cdot 3540$	$0 \cdot 1421$	$0 \cdot 1531$	5.955	0.0173	0.0190	0.0152
C(16)	$0 \cdot 2944$	$0 \cdot 1165$	-0.0227	$5 \cdot 488$	0.0164	0.0187	0.0142
C(17)	$0 \cdot 4003$	$0 \cdot 2281$	-0.0158	$5 \cdot 711$	$0 \cdot 0168$	0.0188	0.0143
C(18)	0.1063	0.3468	-0.0304	5.231	0.0155	0.0167	0.0138
C(19)	$0 \cdot 0777$	$0 \cdot 3486$	-0.1192	6.927	0.0185	$0 \cdot 0211$	0.0172

zone the structure factors were put on an approximately absolute scale, and the mean Debye temperature factor for the molecule was determined, by Wilson's method; ${ }^{4}$ however, the special position of the heavy metal atom invalidated the statistical assumptions of this method, and correct scale factors were obtained only by the comparison of observed and calculated structure factors for each layer line separately.

Structure Analysis.-The position of the phosphorus atom was found from the two-dimensional Patterson functions $P(U W)$ and $P(V W)$. Three successive three-dimensional electron-density maps were then calculated, the phases of the structure factors being determined

[^1]Table 2.
Bond lengths and angles, with standard deviations.

Atoms	Length (A)	s.d. (\AA)	Atoms	Angle	s.d.	Atoms	Angle	s.d.
Co-P	$2 \cdot 232$	0.004	$\mathrm{P}-\mathrm{Co}-\mathrm{C}(1)$	89.08 ${ }^{\circ}$	$0 \cdot 41^{\circ}$	$\mathrm{Co}-\mathrm{P}-\mathrm{C}(10)$	113.79°	$0 \cdot 6{ }^{\circ}$
Co-C(1)	1.961	0.012				$\mathrm{P}-\mathrm{C}(10)-\mathrm{C}(11)$	121.6	$1 \cdot 1$
			$\mathrm{Co}-\mathrm{C}(1)-\mathrm{C}(2)$	$117 \cdot 1$	0.8	$\mathrm{P}-\mathrm{C}(10)-\mathrm{C}(15)$	119.3	$1 \cdot 0$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.46	0.017	$\mathrm{Co}-\mathrm{C}(1)-\mathrm{C}(6)$	$130 \cdot 2$	$0 \cdot 9$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	$119 \cdot 1$	$1 \cdot 4$
$\mathrm{C}(2-\mathrm{C}(3)$	$1 \cdot 45$	0.019	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$112 \cdot 1$	$1 \cdot 0$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.0	$1 \cdot 4$
$\mathrm{C}(3-\mathrm{C}(4)$	1.41	0.025	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	123.2	$1 \cdot 1$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.4	1.6
$\mathrm{C}(4,-\mathrm{C}(5)$	1.38	0.020	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	121.5	$1 \cdot 1$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	125.5	1.6
$\mathrm{C}(5,-\mathrm{C}(6)$	$1 \cdot 42$	0.019	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$115 \cdot 2$	1.2	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$115 \cdot 0$	$1 \cdot 4$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1 \cdot 39$	0.021	C(2)-C(3)-C(4)	117.9	1.2	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	$122 \cdot 0$	$1 \cdot 4$
			$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.4	1.2			
$\mathrm{C}(2)-\mathrm{C}(7)$	1.55	0.026	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$117 \cdot 8$	1.2	$\mathrm{Co}-\mathrm{P}-\mathrm{C}(16) .$.	$117 \cdot 64$	$0 \cdot 6$
$\mathrm{C}(4)-\mathrm{C}(8)$	1.57	0.022	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$	$120 \cdot 8$	1.2	$\mathrm{P}-\mathrm{C}(16)-\mathrm{C}(17)$	117.7	$1 \cdot 0$
$\mathrm{C}(6)-\mathrm{C}(9)$	1.55	0.019	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	117.7	1.2			
			$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$127 \cdot 5$	$1 \cdot 2$	Co-P-C(18)	117.82	$0 \cdot 6$
$\mathrm{P}-\mathrm{C}(10)$	1.835	0.017	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(9)$	$116 \cdot 1$	1.0	$\mathrm{P}-\mathrm{C}(18)-\mathrm{C}(19) \ldots .$.	$112 \cdot 0$	$1 \cdot 1$
$\mathrm{C}(10)-\mathrm{C}(11)$.	1.39	0.025	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	$116 \cdot 13$	$1 \cdot 1$			
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 42$	0.028				$\mathrm{C}(10)-\mathrm{P}-\mathrm{C}(16)$	$101 \cdot 8$	0.7
$\mathrm{C}(12)-\mathrm{C}(13) \ldots$	1.35	0.031				$\mathrm{C}(10)-\mathrm{P}-\mathrm{C}(18)$	$98 \cdot 9$	0.7
$\mathrm{C}(13)-\mathrm{C}(14) \ldots$	1.37	0.027				$\mathrm{C}(16)-\mathrm{P}-\mathrm{C}(18)$	104-1	0.8

Table 3.
Intermolecular non-bonding distances (\AA) of less than $3.5 \AA$.

Cobalt-mesityl..................	$\mathrm{Co}-\mathrm{C}(7)$	$3 \cdot 19$	Phenyl-ethyl	$\mathrm{C}(10)-\mathrm{C}(17)$	$3 \cdot 27$
	$\mathrm{Co}-\mathrm{C}(9)$	$3 \cdot 35$		$\mathrm{C}(11)-\mathrm{C}(18)$	3.06
Mesityl-phosphine-phenyl...	$\mathrm{C}(2)-\mathrm{C}(11)$	$3 \cdot 38$		$\mathrm{C}(15)-\mathrm{C}(16)$	$3 \cdot 09$
	$\mathrm{C}(7)-\mathrm{C}(10)$	$3 \cdot 35$		$\mathrm{C}(15)-\mathrm{C}(17)$	$3 \cdot 36$
	$\mathrm{C}(7)-\mathrm{C}(11)$	$3 \cdot 48$	Ethyl-ethyl	$\mathrm{C}(16)-\mathrm{C}(19)$	$3 \cdot 27$
Mesityl-phosphine-ethyl	$\mathrm{C}(1)-\mathrm{C}\left(16^{\prime}\right)$	3-13		$\mathrm{C}(17)-\mathrm{C}(18)$	$3 \cdot 27$
	$\mathrm{C}(1)-\mathrm{C}(18)$	$3 \cdot 47$			
	$\mathrm{C}(2)-\mathrm{C}\left(16^{\prime}\right)$	$3 \cdot 44$			
	$\mathrm{C}(6)-\mathrm{C}\left(16^{\prime}\right)$	3•44			

at each stage by the contributions of the atoms located in previous stages. An increased number of terms was used in successive maps. The phenyl group of the phosphine appeared in the first map, and most of the carbon atoms in the second; the mesityl group did not become clearly visible until the third map. The scale factors for each layer were then adjusted to make $\sum F_{\text {calc }}^{2}=\sum F^{2}{ }_{\text {obss }}$, one cycle of least-square refinement was calculated, giving an R-value of 0.285 , and a difference-Fourier synthesis in which all the terms were used showed the one remaining ethyl-carbon atom.

Seven cycles of least-squares refinement, including one more layer-scaling cycle, were then computed. Isotropic temperature factors were refined for each atom, but only the diagonal terms of the least-squares matrix were used. No hydrogen atoms were included. The final R-value, including the non-observed terms, was 0.161 for the 1345 reflections, while the sum $\sum w \Delta F^{2}$ was less than one-tenth of the value for the first cycle. The changes in atomic parameters indicated by the final cycle were less than the calculated standard deviations, and neither $\sum \Delta F$ nor $\sum w \Delta F^{2}$ had decreased from the previous cycle. The final difference map had no areas of more than $\pm 0.7 \mathrm{e} / \AA^{3}$. The atomic parameters are given in Table 1, and the observed and calculated structure factors in Table 4.

Throughout the refinement, bond length and angle calculations were made between cycles, and frequent checks were made on the planarity of the aryl groups. These results showed a steady improvement in consistency.

The Mercury computer library programmes used included data reduction (J. A. Bland

Table 4.
Observed and calculated values of structure factors.

Table 4. (Continued.)

Table 4. (Continued.)

hkl	$I O F$	$1 \circ F$	IOAF	$h k$	l rof	IOF	IOA F	$h k$	IOF	IOF	IOA F	$h k$	$I O F$	IOF	IOAF	$h k l$	roF	$10 F$	YOAF
- ${ }_{-10}$	${ }_{134}{ }^{\text {a }}$	${ }_{136}{ }^{\text {c }}$ C	-22	- 7	13^{-0}	130^{-c}	1		$1-0$			$\overline{9}$				-1	$128{ }^{-1}$	114	15
-11	257	236	21	8	52*	14	3^{88}	-	-245	-204	-40	0	-56	-51	-5	-2	-49**	-51	
-12	223	192	31	9	${ }^{173 *}$	144	30	1	117	117	,	1	55	17	3^{8}	-3	${ }^{101}$	79	21
-13	327	188	39	10	-42^{*}	-17	-25	2	-242\%	-204	-3^{8}	2	-52**	-42	-11	-4	51*	21	31
-14	314	319	-6	11	126	140	-14	3	57^{*}	69	-12	3	50^{*}	10	40	-5	53*	47	4
-15	109	$1: 3$	-13	-1	336	331	5	4	-216	-207	-9	4	-48^{*}	-29	-19 -8	-6	50^{*}	8	42
-16	228	234	3	-2	- 149	-119	-3°	5	76	64	12	5	44**********	52	-8	-7	50^{*}	36	14
-17	65	84	-19	-3	261	23^{8}	23	6	-51*	-46	-5	6	$-39 *$	-6	-33	-8	-105	-51	-54
-18	55	69	-14	-4	78	57	21	7	47*	68	-21	7	$-32 *$	-15	-17	-9	95	72	33
-19	69	81	-12	-5	318	308	15	8	-74	-84	11			-12	-8	- 10	-97*	-53	-44
				-6	164	132	32	9	87	34	53	-1	113	90	23	-11	44*	29	14.
6	2			-7	357	367	-9	-1	176	132	45	-2	-99	-100					
-	335	343	-8	-8	-66	-32	-34	-2	-216	-182	-34	-3	82	148 -358	-67	10	2		
1	192	152	$4{ }^{\circ}$	-9	227 **	227	-0	-3	132 304	128 361	3	-4	${ }^{-153} 5$	-158 44	-3	\bigcirc	${ }^{18} 3_{3}$	142	42
2	259	213	48	-10	58 263	32 225	26 38	-4	-304 256	-261 195	-42 63	-5	-887	44 -139	13 -42	1	42^{*}	${ }^{36}$	7
3	144	142	2	-11	263 102	225 54	38 48	-5	256 -199	195 -163	63 -36	-6	$\begin{array}{r}-183 \\ \hline 184\end{array}$	-139 -94	-42 20	2	130	136	14
4	114.4.	106 -17	-8	-12	102	54 224	48 17	-6	-199 252	-163 230	-36 22	-7 -8	114 -137	94 -112	20 -25	3	135 98	918	24
5	$-47{ }^{*}$	-17 -30	-30 -18	-13 -14	241 109	224 77	17 32	-7 -8	252 -242	230 -169	22 -73	-9	-137 192	138 137	-25	- ${ }^{4}$	${ }^{98}{ }^{8}$	78 14	31
	58^{*}		51	-15	150*	$\because 40$	10	-9	117	113	4	-10	-132	-96	-36	-2	$\begin{array}{r}117 \\ \hline 18\end{array}$	74	32 38 38
8	-14*	98	16	-16	-47	-31	-36	-30	-160	-160	1	-18	127 -122	91 -96	-36	-3	162	123	49
9	54^{*}	37	17	-87 -88	123 1088	113 74	$\begin{array}{r}9 \\ \hline\end{array}$	-11	236 -78 -785	207 -66	29 -12	-12 -13	-823 -88	-96	-25 -4	-4	49**	43	7
10	50**	4^{8}	2			74	35	-12 -13	-78 395		-12 26	-14	-120	-92	-26	-5	121 130	94 111	36
13	$-4{ }^{-3}$	-14	-31 -31		2			-13 -14	195 -206	170 -164	26 -42	-15	-74	$\begin{array}{r}96 \\ \hline 9\end{array}$	-2	-6	${ }^{1} 3^{-4} 8^{\circ}{ }^{*}$	111	18
12	$-3^{8} *$	-7	-35	-	284	158	16	-14	-206 65	-184 -88 -81	-42 -23	-16	-123	-105	-18	-7	-48*	-15 164	-33 -6
13	-37	-51	25	1	- 805	-139	14	-16	-166	-313	-23 -54		- 3	-. 5		-8	157 -46	164 -58	$8{ }_{12}$
-1	${ }^{6} 4$	46	38	2	-142*	$\begin{array}{r}128 \\ \hline 18\end{array}$	13	-16 -17	-168 +140	-133 -820	-54 30					-9	-46 116	-58	12
-2	161	122	39	3	$-48 *$	-32	-16		88	820	20	${ }^{9}$ 。	224	176		-10	116	108 17	${ }_{8}^{8}$
-3	537	66	71		95		-8	8				-	224 -183		49 -37	-11	101 130	17 829	84
-4	84	12	71 60	5	-863	-161	-2	-	2 48^{*}	81	-33	3	-183 170	186 -138	-37 -32	-12 -13	130 -98	129 -65	\circ -33
-5	157 505	97	60	6	113	92	20	1	$-3^{\circ}{ }^{7}$	-229	-78	3	-49**	-10	32 -40	-31 -34	$\begin{array}{r}\text {-98 } \\ \hline 61\end{array}$	-65 72	-33 -31
-7	37°	256	14	7	-76	-78	-6	2	57*	$7{ }^{\circ}$	-13	4	232	219	14				
-8	184	177	7		192\%	161	31	3	-200	-341	41	5	$-4{ }^{\text {r }}$	-56	14	11	-		
-9	126	101	26	9	-46	-4	-42	4	190	898	-8	6	143.	357	-14	\bigcirc	5^{8}	100	-42
$1{ }^{-1}$	207	223	-17	10	${ }^{2} 33 \times$	157 -17	-24	5	-105	-105	-0	7	$-29 *$	-73	44	2	${ }^{88}{ }^{8}$	120	-32
-11	113	112	1	13	-31	-17	-14	6	49^{4}	165	-116	-1	-214	-142	-73	-4	3^{8}	28	10
-12	303	103	-	-1	-209 -145	-202 156	-7	7	-165	-151	-14	-3	235	186	45	-6	-65 .	-49	-16
-13	569	145	24	-2	145 -293	156 -349	-18		118	104 -63	15	-3	-56	-28	-28	-8	3^{88}	32	6
-34	123	86	26	-3	-293**	$\begin{array}{r}-349 \\ \hline 19\end{array}$	-44	9	-78**	-63	-15	-4	209	128	80	-10	-67	-81	14
-15	223	207	16	-4		19 -155	27 -37	10		138 -324	-133 -36	-5	183	98	85	-12	-63	-84	21
-16	170	122	48	-5	$-192 *$	-155 30	-37 16	-1	-298	-324	26 -9	-6	267	234	53				
-17	98	94	4	-6	-4\%**	33° -24	16 -23	-2	233 -270	243 -262	-9	-7	-132	-121	9	11	1 \%		
-18	169	143	26	-7	-47*	-24	-23 -15	-3	-270		-9	-8	210	170	40	-	30^{*}	49	-19
-19	71	69	2	-9	-47**	62 -18	-15 -30	-4	182 -200	175 -308	7	-9	$-\mathrm{-2O}_{3}$	-48	- 154	1	4^{8}	81	-33
				-10	$48{ }^{\text {\% }}$		-38	-6	-200			-10	52^{*}	75	-23	-1	82	$7{ }^{1}$	13
7	-			-18	-48******	27 -60			${ }^{191}{ }^{18}{ }^{\text {* }}$	186 -18	5	-11	-50**	-12	-38	-2	71	98	-26
-	219	25^{8}	-39	-11	-488	-60	12		-48	-18 158	-3 -0	-12	48**	72	-24	-3	$37 *$	60	-23
2	185	221	-36	-12	141	107 90	34	-8	157	158	-0	-13	-45*	-29	-16	-4	$163 *$	154	9
4	319	365	-45	-13	112	90	22	-9	${ }^{-1} 42$ *	-128	-14	-14	89	71	19	- 5	39*	47	-8
6	150	170	-21	-14	138 819	105	26	-10	57	33	24	-15	-126**	-103	-23	-6	87	90	-2
8	52^{*}	10	42	-15	579 509	115 85	64	-18	-132	-78	-42	-16	25^{*}	29	-4	-7	102	74	28
10	6^{60}	58	2	-16	109 108	76	25	-12	144	112	32					-8	74	90	-16
12	23^{*}	75	-54	${ }_{-1}^{-1}$	108*	76	33	-13	132	75	57	10	-			-9	99	10	89
-2	400	417	-17			43	-84	-14	${ }^{18}{ }^{3}{ }^{*}$	$1{ }^{19}$	43	\bigcirc	46^{*}	22	24	-10	$33^{* *}$	87	-55
-4	680	727	-47	8	\bigcirc			-15	44°	11 55	32 20	2	$4{ }^{*}$	42	-0	-11	$28^{8 *}$	35	-7
-6	491	502	-11	-	${ }^{\circ} 885$			-16	75 -3	- 55	12	4	73	77	-5	-12	83	41	42
-8	334	416	-82	-	185 96	182 185	-893	-17	- ${ }^{9}$ *	-43	14	-	144	181	-37				
- 10	44°	444	-4	4	965	115 94	-89 -89					-4	183	171	12	11	2		
-12	323	345	-22	4	- 65	-94	-29 -89	9	- *			-6	56	36	20	-	83	83	-1
-14	67	123	-56	8	-50**	- 18	-19	-	56^{*}	10	46	-8	-50*	-13	-37	-1	67	91	-74
-16	89	108	-18	8		18	23 -3	2	-69	-53	-16	-10	46**	34	12	-2	98	94	4
-18	133	158	-25	10	-25	-22	-3 -37	4	-86%	-79	-7	-13	-40*	-5	-35	-3	92	129	-37
				-2	133	170 16.	-37	6	-40*	-41	1	-14	-29	-14	-15	-4	71	93	-22
7	1			-4	169 817	163		-2	86	121	-35					-5	125	66	59
-	-57^{*}	-46	- 0	-6	18 9	172 142	-55 -48	-4	56	43	13	10	1			-6	114	124	-10
2	190	199	-9	-8	94	142	-48	-6	56	57	-1	\bigcirc	124	3.3	92	-7	112	88	33
2	-146	-129	-17	10	273	295	-23	-8	56	80	-24	1	45*	19	26	-8	83	108	-26
3	248*	275	-27	-12	152 50	199 88	-47 -38	-10	84	114	-3°	2	41^{*}	73	-32	-9	112	60	52
4	-58^{*}	-12	-46	-14	$5{ }^{5}$	89	-38	-12	195	193	2	3	80	86	-6	-10	89	143	-53
5	24^{8}	225	23	-18 -18	84	99 $\times 75$	- $\begin{array}{r}-15 \\ -83\end{array}$	-34	84	99	-15	4	32^{*}	29	3	-13	87	35	52
6	-852	-132	-3°	-18	12	$\times 75$	-863	-16	75	98	-23	5	58	60	-2				

Unobserved reflections are given the minimum observable value in the region; these are marked by an asterisk.

Fig. 2. The molecule viewed down the z - and the x-axis, showing the distortions from ideal symmetry caused by steric hindrance, and the o-methyl groups in contact above and below the cobalt atom. The distances in \AA of the carbon atoms from the $y z$-plane are also shown.
and J. M. R.), $P 2_{1} / c$ isotropic structure factors with least squares, and general Fourier syntheses (O. S. Mills) and distance-angle routine (R. A. Sparks).

Results.-The molecule is illustrated in Fig. 1 and its dimensions are listed in Table 2.* It has, in outline, the expected stereochemical arrangement, but with some significant differences in detail. The co-ordination of the cobalt atom is exactly square-planar, the mesityl groups are planar and perpendicular to the cobalt co-ordination plane, and the o-methyl substituents in the two mesityl groups are in contact with each other above and below the co-ordin-

Fig. 1. The molecule as numbered and as viewed in clinographic projection.
ation plane. The steric hindrance of the ligands, however, affects the configuration at the equivalent atoms $C(1)$ and $C\left(1^{\prime}\right)$: the two mesityl groups are thus not coplanar and the cobalt atom lies $0 \cdot 22 \AA$ from each mesityl plane (Fig. 2a). The mesityl groups are also not mirrorsymmetrical about the co-ordination plane (Fig. 2b). Significantly, these distortions leave the two o-methyl groups $\mathrm{C}(7)$ and $\mathrm{C}\left(9^{\prime}\right) 4.03 \AA$ apart, a normal distance for methyl groups in unstrained contact, in sharp contrast with the unusually short contact distances found elsewhere in the molecule (Table 3). The cobalt-o-methyl distances are $3 \cdot 19 \AA\left[\mathrm{Co}^{-} \mathrm{C}(7)\right]$ and $3 \cdot 35 \AA\left[\mathrm{Co}{ }^{-} \mathrm{C}(9)\right]$.

The phosphine groups shows distortion of the tetrahedral angles at the phosphorus atom. The metal-phosphorus-carbon angles (mean $116 \cdot 4^{\circ}$) are all significantly greater than the carbon-phosphorus-carbon angles (mean 101.6 ${ }^{\circ}$, and the hydrocarbon groups thus project away from the metal atom more than in the ideal tetrahedral arrangement. The phenyl group is planar within the limits of error, and the phosphorus atom lies in this plane; the phosphoruscarbon and carbon-carbon bond lengths in the phosphine group are normal.

Discussion

The cobalt-phosphorus bonds of $2 \cdot 23 \AA$ are short compared with the radius sum $[2 \cdot 4 \AA$ if the cobalt(II) ion is assumed to have the normal octahedral radius of $1 \cdot 3 \AA$ and the phosphorus atom to have the tetrahedral radius of $1 \cdot 10 \AA$]; they therefore have considerable double-bond character, presumably from $d_{\pi}-d_{\pi}$ overlap (cf. Fig. 3). The bondlengths are very similar to the platinum-phosphorus bond-lengths of $2 \cdot 26 \AA$ in trans$\left[\mathrm{PtHBr}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{5}$

The radius sum for a cobalt-carbon single bond is $2.0 \AA$, as found in the vitamin B_{12} co-enzyme ${ }^{6}(2.05 \pm 0.05 \AA)$, and in the cobalt-acetylene carbon bond ($1.96 \AA$) in the π-complex hexacarbonyldiphenylacetylenedicobalt. ${ }^{7}$ The cobalt-carbon bond length

[^2]
3418 Structure of trans-Dimesitylbis(diethylphenylphosphine)cobalt(II).

of $1.96 \AA$ therefore indicates that the $\mathrm{Co}^{-} \mathrm{C}(\mathrm{l})$ bond is single; since the cobalt atom is not co-planar with the mesityl group there can be little $d_{x y}-p \pi$-bond formation between the cobalt atom and the mesityl group. The shorter $\mathrm{Co}^{-} \mathrm{C}(1)$ distance required for π-bond

Fig. 3.
formation could be achieved only by greater distortion at $\mathrm{C}(1)$ and a further displacement of the mesityl groups. These groups remain rigidly planar and undistorted and the methyl groups resist any tendency to be forced closer together. In this respect the orthosubstituents tend to reduce rather than to increase the stability of the complex.

Two essential requirements for the stability of alkyl and aryl complexes of Group VIII metals are known to be a square-planar configuration, and the presence of ligands of high field-strength, thus ensuring a large ligand-field stabilisation energy. ${ }^{1,2,8}$ These two factors are always present in platinum and palladium complexes of the type $\left[\mathrm{MR}_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]$ which are normally square-planar and therefore stable whatever the nature of R. In four-co-ordinated complexes of nickel, cobalt, and iron, which more readily adopt a tetrahedral configuration, steric hindrance is needed to maintain a square-planar configuration

IFig. 4. Scale drawings showing the mutual interaction of the R and X groups in square-planar complexes $\left[\mathrm{MR}_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]$ and $\left[\mathrm{MRX}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]$. The R and X groups are approximately coplanar because of the steric hindrance from the phosphine ligands, and the stability of the square-planar configuration is related to the minimum $\mathrm{R}-\mathrm{M}-\mathrm{R}$ or $\mathrm{R}-\mathrm{M}-\mathrm{X}$ angle.

In the compound we have studied the steric hindrance has two components; the aryl groups are restricted to the $y z$-plane by the bulky phosphine groups; and they are prevented from rotating relative to each other round the $\mathrm{P}-\mathrm{Co}-\mathrm{P}$ axis by the mutual interaction of the ortho-substituents.

The extent of this mutual interaction can be estimated from scale drawings, as illustrated in Fig. 4 for various complexes; the minimum possible $\mathrm{R}-\mathrm{M}-\mathrm{R}$ or $\mathrm{R}-\mathrm{M}-\mathrm{X}$ angle is shown, and indicates the difficulty with which the tetrahedral configuration could be attained. Thus nickel complexes in which the angle is less than 120° either cannot be isolated or are unstable. In cobalt and iron complexes the planar configuration is so unstable that it exists only when the two R groups are firmly held in opposition with their ortho-groups in contact and $\mathrm{R}-\mathrm{M}-\mathrm{R}=180^{\circ}$ (Fig. 2b).

It is thus possible to explain the relative stabilities of the complexes $\left[\mathrm{MR}_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]$

[^3]mainly on stereochemical grounds. The shielding of the z-direction from attack by reagents, which has a major effect on their chemical reactivity in solution, ${ }^{9}$ is a further consequence of the close contact of the ortho-groups. The stabilisation of the non-bonding $d_{x y}$-orbital by metal-aryl π-bonding, an effect which was previously thought to be general and of crucial importance, does not occur at all in this compound and will evidently have only a minor effect on stability.

We are indebted to Dr. J. Chatt, F.R.S., for valuable discussion and criticism, to the authors of the computer programmes for permission to use them, to Dr. B. Richards for supervising the computing, and to Mrs. J. Quarmby for assistance.

Imperial Chemical Industries Limited,
Heavy Organic Chemicals Division, Akers Research Laboratories,
The Frythe, Welwyn, Herts.
[Received, July 5th, 1962.]

- Basolo, Chatt, Gray, Pearson, and Shaw, J., 1961, 2207.

[^0]: ${ }^{1}$ Chatt and Shaw, J., 1959, 705, 4020.
 ${ }^{2}$ Chatt and Shaw, J., 1960, 1718; 1961, 285.

[^1]: ${ }^{3}$ Figgis and Nyholm, $J ., 1954,12$.
 ${ }^{4}$ Wilson, Nature, 1942, 150, 152.

[^2]: * The relations between the molecular co-ordinates X, Y, Z and the unit cell co-ordinates x, y, z are: $\quad X=0.7393 x+0.6685 y-0.1323 z: \quad Y=-0.6407 x+0.6623 y+0.5533 z ; \quad Z=-0.2066 x+$ $0.3379 y-0.8225 z$.
 ${ }^{5}$ Owston, Partridge, and Rowe, Acta Cryst., 1960, 13, 246.
 ${ }^{6}$ Lenhert and Hodgkin, Nature, 1961, 192, 937.
 ${ }^{7}$ Sly, J. Amer. Chem. Soc., 1959, 81, 18.

[^3]: ${ }^{8}$ Chatt, Proc. Chem. Soc., 1962, 318.

